

Brain intratumoral At-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice

Pr Michel CHÉREL - CRCI²NA Nuclear Oncology

Dr Emmanuel GARCION - CRCI²NA GLIAD Dr François HINDRÉ - CRCI²NA GLIAD

Glioblastoma : an unmet clinical need

Current therapeutic strategy (since 2005)

Aim: To innovate in terms of targeted radiotherapy for the locoregional treatment of glioblastoma

1. Using locoregional radiotherapy to bypass the blood-brain barrier

¹Bobo et al. Proc Natl Acad Sci USA. Mar 15;91(6):2076-80 (1994) ²Nwagwu et al. Pharmaceutics. Dec 30;13(1):40 (2020) ³D'Amico et al. J Neurooncol. 151(3):415-427 (2021)

2. α -emitters for vectorized radiotherapy of glioblastoma

 \rightarrow Large tumor volume

 \rightarrow Targeting required

2. α -emitters for vectorized radiotherapy of glioblastoma

Astatine-211 (²¹¹At)

Half-life : 7,2h Tissu range < 100μ m E_{α} : 5,9 and 7,5 MeV LET : 99 keV/ μ m

3. Targeted radiotherapy to deliver radiopharmaceuticals

¹Shi et al. (2017) Oncotarget 8, 40922–40934 ²Zhong et al. (2022) Front. Genet. vol. 13 792443 ³Chen et al. (2017) Oncol. Lett. vol. 14,6 ⁴Francescone et al. (2011) J. Biol. Chem. vol. 286,17

3. Targeted radiotherapy to deliver radiopharmaceuticals

Syndecan-1 is overexpressed in GL261 tumors in the immunocompetent C57BL/6j mouse model

A : Immunofluorescence (n=5)

Survival median without treatment: 33 days

C57BL/6j – GL261 : methodology

I. Biodistribution study of the [¹²⁵I]-9E7.4 conjugate in the C57BL/6j-GL261 model

I. The biodistribution study reveals a major brain retention of the [¹²⁵I]-9E7.4 conjugate in the C57BL/6j-GL261 model

I. The [¹²⁵I]-9E7.4 brain retention is significantly higher than [¹²⁵I]-IgG2aκ over 72h

II. Brain diffusion by digital autoradiography of the [¹²⁵I]-9E7.4 conjugate in the C57BL/6j-GL261 model

II. The [¹²⁵I]-9E7.4 conjugate is distributed around the injection site in the C57BL/6j-GL261 model

n=3 for each time point

Digital autoradiography

В

 $\begin{array}{c} \text{Cryosections thickness:} \\ 30 \mu m \end{array}$

Signals superposition

3D reconstruction of the brain distribution volume

III. Locoregional targeted radiotherapy : Survival study after a single injection of [²¹¹At]-9E7.4

III. The [²¹¹At]-9E7.4 radiotherapy reveals a major survival benefit and generates long-term survivors

III. The locoregional [²¹¹At]-9E7.4 radiotherapy exhibits no significant hematological toxicity over time

III. The locoregional [²¹¹At]-9E7.4 radiotherapy exhibits no liver, kidney toxicity over time

MRI follow-up : free astatine-211 and radiolabelled IgG2ak show no significant efficacy on mice survival

Control groupe n=8

MRI follow-up : Detection of free water in the injection area with the conjugate [²¹¹At]-9E7.4

This area is stable over time for the **500kBq** and **200kBq** doses

MRI follow-up : The free water area is resolved over time for the 100kBq dose

[²¹¹At]-9E7.4 **100kBq** n=9 80% cure rate

IV. Long-term memory response? Survivors rechallenge with a new contralateral graft in the striatum

100% of the rechallenged long-term survivors do not develop a new contralateral tumor

23

100% of the rechallenged long-term survivors do not develop a new contralateral tumor

Long-term survivors: [²¹¹At]-9E7.4 **200kBq** n=3

Long-term survivors: [²¹¹At]-9E7.4 **100kBq** n=4

100% of the rechallenged long-term survivors do not develop a new contralateral tumor

Long-term survivors : [211At]-9E7.4 200kBq

[¹⁸F]-FDG PET

Conclusions

- The syndecan-1 targeting by 9E7.4 provides a prolonged brain retention of radioactivity over time which is demonstrated to be decisive regarding survival
- **Controlled brain distribution** (limited area around the injection site)
- Survival benefit + 80% cure rate with the locoregional [²¹¹At]-9E7.4 radiotherapy (100kBq)
- Long-term immunization: investigation on immune populations involved

Perspectives

Ongoing: 3D reconstruction

- Diffusion volumes of [¹²⁵I]-9E7.4 versus [¹²⁵I]-IgG2aκ

What is the impact of syndecan-1 targeting with 9E7.4 on the diffusion volume?

Dosimetric évaluation

Perspectives

Long-term survivors

After a new graft

Mechanisms implied in tumor eradication

- Immunofluorescence (brain, spleen, lymph nodes) : detection of T cells subsets, dendritic cells
- Flow cytometry: detection of memory T cells from blood samples

eBioMedicine Part of THE LANCET Discovery Science

Brain intratumoural astatine-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice

Loris Roncali,^{a,b} Séverine Marionneau-Lambot,^{b,c,d} Charlotte Roy,^{a,e} Romain Eychenne,^{b,f} Sébastien Gouard,^{b,d} Sylvie Avril,^a Nicolas Chouin,^{b,g} Jérémie Riou,^h Mathilde Allard,^b Audrey Rousseau,^{a,h} François Guérard,^b François Hindré,^{a,e} Michel Chérel,^{b,d,i,k,*} and Emmanuel Garcion^{a,e,j,k,**}

EBioMedicine . 2024 Jul:105:105202. doi: 10.1016/j.ebiom.2024.105202. Epub 2024 Jun 20.

Acknowledgements

Nuclear Oncology Team (Nantes, France)

Michel Chérel François Guérard Romain Eychenne Mathilde Allard

Séverine Marionneau-Lambot Sébastien Gouard Nicolas Chouin

🔿 ARRONAX

ing

Emmanuel GarcionCharlotte RoyFrançois HindréSylvie AvrilLoris RoncaliSylvie Avril

